Cauchy's integral formula

From Academic Kids

In mathematics, Cauchy's integral formula, named after Augustin Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk. It can also be used to formulate integral formulas for all derivatives of a holomorphic function.

Suppose U is an open subset of the complex plane C, and f : UC is a holomorphic function, and the disk D = { z : | zz0| ≤ r} is completely contained in U. Let C be the circle forming the boundary of D. Then we have for every a in the interior of D:

<math>f(a) = {1 \over 2\pi i} \oint_C {f(z) \over z-a}\, dz <math>

where the integral is to be taken counter-clockwise.

The proof of this statement uses the Cauchy integral theorem and, just like that theorem, only needs that f is complex differentiable. One can then deduce from the formula that f must actually be infinitely often continuously differentiable, with

<math>f^{(n)}(a) = {n! \over 2\pi i} \oint_C {f(z) \over (z-a)^{n+1}}\, dz.<math>

Some call this identity Cauchy's differentiation formula. A proof of this last identity is a by-product of the proof that holomorphic functions are analytic.

One may replace the circle C with any closed rectifiable curve in U which doesn't have any self-intersections and which is oriented counter-clockwise. The formulas remain valid for any point a from the region enclosed by this path. Moreover, just as in the case of the Cauchy integral theorem, it is sufficient to require that f be holomorphic in the open region enclosed by the path and continuous on that region's closure.

These formulas can be used to prove the residue theorem, which is a far-reaching generalization.

Sketch of the proof of Cauchy's integral formula

By using the Cauchy integral theorem, one can show that the integral over C (or the closed rectifiable curve) is equal to the same integral taken over a tiny circle around a. Since f(z) is continuous, we can choose a circle small enough on which f(z) is almost constant and equal to f(a). We then need to evaluate the integral

∫ 1/(z-a) dz

over this small circle. We may do it by choosing the parametrization (variable substitution)

<math> z = a + \epsilon\cdot\exp{(i\cdot t)} <math>

where <math> 0 \le t \le 2\pi <math> and <math> \epsilon \rightarrow 0 <math>. It turns out that the value of this integral is independent of the circle's radius: it is equal to 2πi.

Example usage

Consider the function

<math>f(z)={z^2 \over z^2+2z+2}<math>

and the contour described by |z|=2, call it C.

To find out the integral of f(z) around the contour, we need to know the singularities of f(z). Observe that we can rewrite f as follows:

<math>f(z)={z^2 \over (z-z_1)(z-z_2)}, \mbox{where}\ z_1=-1+i, z_2=-1-i.<math>

Clearly the poles become evident, their moduli are less than 2 and thus lie inside the contour and are subject to consideration by the formula. By the Cauchy-Goursat theorem, we can express the integral around the contour as the sum of the integral around z1 and z2 where the contour is a small circle around each pole. Call these contours C1 around z1 and C2 around z2.

Now, around C1, f is analytic (since the contour does not contain the other singularity), and this allows us to write f in the form we require, viz:

<math>f(z)={\left({z^2 \over z-z_2}\right) \over z-z_1}<math>

and now

<math>{1 \over 2 \pi i}\oint_{C_1} {\left({z^2 \over z-z_2}\right) \over z-z_1}\,dz=2\pi i{z_1^2 \over z_1-z_2}.<math>

Doing likewise for the other contour:

<math>f(z)={\left({z^2 \over z-z_1}\right) \over z-z_2}<math>
<math>{1 \over 2 \pi i}\oint_{C_2} {\left({z^2 \over z-z_1}\right) \over z-z_2}\,dz=2\pi i{z_2^2 \over z_2-z_1}.<math>

The integral around the original contour C then is the sum of these two integrals:

<math>\oint_C {z^2 \over z^2+2z+2}\,dz = {1 \over 2 \pi i}\oint_{C_1} {\left({z^2 \over z-z_2}\right) \over z-z_1}\,dz + {1 \over 2 \pi i}\oint_{C_2} {\left({z^2 \over z-z_1}\right) \over z-z_2}\,dz = 2\pi i\left({z_1^2 \over z_1-z_2}+{z_2^2 \over z_2-z_1}\right)<math>
<math>=2\pi i(-2)=-4\pi i.\;\!<math>fr:Formule intégrale de Cauchy
Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools