Conjugate element (field theory)

From Academic Kids

In mathematics, in particular field theory, the conjugate elements of an algebraic element α, over a field K, are the (other) roots of the minimal polynomial


of α over K. If K is given inside an algebraically closed field C, then the conjugates can be taken inside C. Usually one includes α itself in the set of conjugates.

If no such C is specified, one can take the conjugates in some relatively small field L. The smallest possible choice for L is to take a splitting field over K of PK, containing α. If L is any normal extension of K containing α, then by definition it already contains such a splitting field. Assuming only that P is a separable polynomial, this means that we can take L to be a Galois extension.

Given then a Galois extension L of K, with Galois group G, and containing α, any element g(α) for g in G will be a conjugate of α, since the automorphism g sends roots of P to roots of P. Conversely any conjugate of α is of this form: in other words, G acts transitively on the conjugates. This follows because it is true for the Galois group of the splitting field, and G maps surjectively to that group by basic properties of the Galois correspondence.

In summary, assuming separability, the conjugate elements of α are found, in any finite Galois extension L of K that contains K(α), as the set of elements g(α) for g in Gal(L/K). The number of repeats in that list of each element is the degree [L:K(α)] which is also [L:K]/d where d is the degree of P.

A theorem of Kronecker states that if α is an algebraic integer such that α and all of its conjugates in the complex numbers have absolute value 1, then α is a root of unity. There are quantitative forms of this, stating more precisely bounds (depending on degree) on the largest absolute value of a conjugate that imply that an algebraic integer is a root of konjugált


Academic Kids Menu

  • Art and Cultures
    • Art (
    • Architecture (
    • Cultures (
    • Music (
    • Musical Instruments (
  • Biographies (
  • Clipart (
  • Geography (
    • Countries of the World (
    • Maps (
    • Flags (
    • Continents (
  • History (
    • Ancient Civilizations (
    • Industrial Revolution (
    • Middle Ages (
    • Prehistory (
    • Renaissance (
    • Timelines (
    • United States (
    • Wars (
    • World History (
  • Human Body (
  • Mathematics (
  • Reference (
  • Science (
    • Animals (
    • Aviation (
    • Dinosaurs (
    • Earth (
    • Inventions (
    • Physical Science (
    • Plants (
    • Scientists (
  • Social Studies (
    • Anthropology (
    • Economics (
    • Government (
    • Religion (
    • Holidays (
  • Space and Astronomy
    • Solar System (
    • Planets (
  • Sports (
  • Timelines (
  • Weather (
  • US States (


  • Home Page (
  • Contact Us (

  • Clip Art (
Personal tools